NREL/ORNL/DOE Distributed Power System Integration R&D

"Fast Response, Load-Matching Hybrid Fuel Cell"

Tom Key
EPRI PEAC
Quarterly Review Meeting
July 27, 2001 Washington, DC

Project Overview

- This project integrates ultra-capacitor and PEM fuel cell technologies to create a "fast response, load-matching, hybrid fuel cell"
- NREL Project Manager Tom Basso, PEAC Team T. Key, T. Geist, D. Nastasi, ESMA Ultra Capacitors and DCH-Enable Fuel Cell
- Objective is to establish performance potential as grid-tied hybrid distributed resource

Plans for 2001 (Base Year)

- Report system performance results Oct 2001
 - Design, specifications and evaluation
 - Ragone plots results with and without storage
 - Demonstrate operations from standby mode and as battery replacement in a UPS (EPRI funded tasks)

3 kW PEM Fuel Cell System

Schematic of Hybrid

≈ 3-kW fuel cell system designed robust response

<u>Topical Report</u> – Double Layer Electro-Chemical Capacitors

- Overview of storage technology with cost/ performance of storage systems compared
- Reviewed 18 Companies, 2 US and 16 Overseas
- ∠ Sizes from 10 Joule to 166 k Joule
- Claims verified by testing of two leading manufactures

Energy Stored vs. Power Available

- Comparison by Ragone Plots
- Power Density in kW/kg
- Energy Density in kJ/kg where:

 1kJ = .28 W-Hr

The Power of Reliability

Table 1.
Comparison
of some key
energystorage
technologies

Energy-Storage Technology Type	Energy Density (WH/kg)	Power Density (W/kg)	Commercial Availability
Batteries: Lead Acid Nickel Cadmium Lithium-Ion Nickel Hydride Zinc-Air Aluminum-Air Sodium Chloride Sodium Sulfur Zinc Bromine	35 35 90 59 350 400 90 170 70	300 200 180 200 60-225 10 150 260 100	Very mature and readily available Mature and available Available Available Emerging – very promising Emerging – very promising Available Available Available Available
Ultracapacitors (electrochemical capacitors)	1-15	2,000- 10,000	Commercial Now for PQ but Improved products in 1-5 years for longer duration applications
Advanced Flywheels (steel and composite)	10-100	1,000- 10,000	PQ Products Available Now, Long Duration Products Emerging
Superconducting Magnetic Energy Storage (SMES)	62	300-1,000	PQ Products Available Now, Longer Duration Products in Development

Hypothetical crossover points where SMES and ultra-capacitors become less expensive than battery-storage systems

Comparison of Storage Options

Parameter	Batteries	Ultra-capacitors	Flywheels
Efficiency	70-90%	90%	90%
Power Range (W)	5 kW – 10 MW	5-100 kW	1 kW – 10 MW
Energy Range (J)	0.1-600 MJ	1 kJ-10 MJ	1-15 MJ
Cycle Life	2,000	100,000+	10,000
Charge Time	Hours	Seconds – minutes	Minutes
Technology Status	Mature	Available	Available
Capital Cost (\$/kJ)	\$0.2-1.5	\$5.0-20	\$0.3-2

Cost comparison of electrochemical capacitors (commercially available 5- to 10-V capacitors having the largest available capacitance)

Type	\$/Farad	
Electrochemical (Projected)	0.25 - 5	
Carbon EC – Commercial	1 - 20	
Aluminum Electrolytic	100 - 300	
Carbon EC - Military	300 - 700	
Tantalum Wet- Slug	8,000 - 13,000	

Table 2.
Listing of
manufacturers
of double layer
electrochemical
capacitors

Company	Capacitance(F)	Voltage (V)	Energy (kJ)
Asahi Glass	240	2.5	1
Asahi Glass	4,300	2.5	13
PCOND	85	28	34
<u>PCOND</u>	25	64	51
ELIT	50	31	24
ELIT	0.5	450	50
ELIT	0.5	359	30
ESMA	130,000	1.3	166
ESMA	32,000	1.4	41
ESMA	3,200	1.4	3
Evans	.56	10	2.8
Evans	0.033	25	0.01
Isuzu/Fuji	100	14	10
Maxwell	2,700	2.3	7
Matsushita	470	2.3	1
Matsushita	1,500	2.3	4
NEC	500	5.5	7
<u>NEC</u>	470	15	53

Ragone plots for sample with 1-kJ ratings

Testing of sample ultra caps

The Power of Reliability"

ESMA Ultra Capacitor

In 1999-2000 PEAC tested several models of asymmetrical supercapacitors.
Results confirm manufacturer performance claims.

✓ Voltage window 16-8V

≤ Stored Energy 1 MJ

Weight 75 lbs (34 kg)

Plot of UPS characteristics with ELIT 110/220PP capacitor

Note: No measurable change after 2000 ride-thru cycles

Key Results in Ultra Cap Report

- New asymmetrical design ultra caps have 4 to 10 times greater energy density versus traditional symmetrical designs.
- For stabilizing applications such as hybrid PEM-Ultra Cap and motor starting the ultra cap is a natural partner.
- Fuel cell with ultra-capacitor may have sufficient energy density to replace lead-acid batteries in short duration applications...e.g. in a UPS or ASD, and may be the least cost option in these applications.

Status as of 7/2001

- Completed topical report on double layer electrochemical capacitor technology
- ∠ Have mated ESMA ultra capacitors with DCH-Enable 3-kW PEM fuel cell from Enable
- Beginning evaluation of 3-kW hybrid fuel cell-ultra capacitor system

Comparison of Different Energy-Storage Technologies Regarding Peak Power and Specific Energy Characteristics

